
Chapter 14

Multiple integrals

In this chapter we study the double integral and triple integral. First, we

define how to compute volumes of a solid by two methods: One by Carvalieri

principle and the other by double integral. Then we show the relation between

them. In fact, one can interpret the Carvalieri principle as an iterated integral

and show this equals the double integral. The triple integral can be treated

similarly.

14.1 Double integral over a rectangle

Double Integral of a function

When f(x, y) is a function over R, then the double integral of f is the

volume of the region above R and under the graph of f . But the double

integral of more general function (say continuous, or piecewise continuous) f

can be similarly defined.

Definition 14.1.1. Assume R = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d}. Then we

Subdivide two intervals [a, b], [c, d] into n -intervals

a = x0 < x1 < · · · < xn = b, c = y0 < y1 < · · · < yn = d.

We call the subrectangles Rij = [xi−1, xi]× [yj−1, yj ] a partition of R and let

∆xi = xi − xi−1, ∆yj = yj − yj−1.

Definition 14.1.2. Given any function f defined on R, and for any point cij
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in Rij consider the sum

S = R(f) =

n
∑

i,j=1

f(cij)∆Aij , (14.1)

where ∆Aij = ∆xi∆yj is the area of Rij . It is called Riemann sum of f

corresponding to the partition. Here ‖P‖ = maxi,j{∆xi,∆yj} is called the

norm(size) of the partition.

(a, d) (b, d)

(a, c) (b.c)

∆xi

∆yj

Figure 14.1: A partition of a rectangle

Definition 14.1.3 (Double integral). If the sum S converge to the same limit

regardless of the points cij and regardless of the partition, then f is called

integrable over R and we write its limit by

∫∫

R
f(x, y) dA = lim

‖P‖→0

n
∑

i,j=1

f(cij)∆xi∆yj.

These are also written as
∫

R f dA or
∫∫

R f(x, y) dxdy.

In particular, if f(x) = 1 we define the area of a closed, bounded plane

region R is given as

A =

∫∫

R
dA.

Double integral as Volumes

If f(x) is nonnegative, we may interpret the double integral as the volume of

a solid region over R bounded by the surface z = f(x, y).

In particular, if f(x) = 1 we define the area of a closed, bounded plane

region R is given as

A =

∫∫

R
dA.
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Reduction to iterated integrals - Fubini’s Theorem

Consider the volume of a solid under f over R = [a, b] ×[c, d] as in figure

14.2. The cross section along x = x0 is the set given by {(x0, y, z)|0 ≤ z ≤
f(x0, y), (c ≤ y ≤ d)}. The area of cross section is

A(x0) =

∫ d

c
f(x0, y) dy.

Hence by Cavalieri principle, the volume is

∫ b

a
A(x) dx =

∫ b

a

[∫ d

c
f(x, y) dy

]

dx.

The expression on the right hand side is called an iterated integral. On the

other hand, if we cut it by the plane y = y0, then the volume becomes

∫ b

a
A(y) dy =

∫ d

c

[∫ b

a
f(x, y) dx

]

dy.

Since these two values are equal,

∫ b

a

[
∫ d

c
f(x, y) dy

]

dx =

∫ d

c

[
∫ b

a
f(x, y) dx

]

dy.

This is called Fubini’s theorem.

x

y

z

y = y0

x = x0

Figure 14.2: Fubini’s theorem by Cavalieri Principle
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Example 14.1.4. Evaluate

∫∫

R
(x2 + y2) dxdy, R = [−1, 1]× [0, 1].

sol.
∫ 1

0

[
∫ 1

−1
(x2 + y2)dx

]

dy =
4

3
.

Now change the order to see the integrals are the same.

Example 14.1.5. Evaluate

∫∫

S
cosx sin y dxdy, S = [0,

π

2
]× [0,

π

2
].

sol.

∫∫

S
cos x sin y dxdy =

∫ π/2

0

[

∫ π/2

0
cosx sin y dx

]

dy

=

∫ π/2

0
sin y

[

∫ π/2

0
cos x dx

]

dy =

∫ π/2

0
sin y dy = 1.

Now change the order to see the result is the same (skip).

Theorem 14.1.6 (Fubini Theorem 1). Let f be continuous on R = [a, b] ×
[c, d]. Then f satisfies

∫ b

a

[
∫ d

c
f(x, y) dy

]

dx =

∫ d

c

[
∫ b

a
f(x, y) dx

]

dy =

∫∫

R
f(x, y) dA. (14.2)

Skip the proof.

Example 14.1.7. Find the volume of the region 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

0 ≤ z ≤ 2− x− y.

sol. First fix x. Then the area of cross section with a plane perpendicular

to x-axis is

A(x) =

∫ 1

0
(2− x− y) dy.
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So the volume is

V =

∫ 1

0
A(x) dx =

∫ x=1

x=0

∫ y=1

y=0
(2− x− y) dydx

=

∫ 1

0

[

2y − xy − y2

2

]1

0

dx

=

∫ 1

0

(

3

2
− x

)

dx =

[

3x

2
− x2

2

]1

0

= 1.

Change the order: You can fix y. Then the area of cross section with a

plane perpendicular to y-axis is

A(y) =

∫ 1

0
(2− x− y) dx.

Hence the volume is

V =

∫ 1

0
A(y) dy =

∫ y=1

y=0

∫ x=1

x=0
(2− x− y) dxdy

=

∫ 1

0

[

2x− x2

2
− xy

]1

0

dy

=

∫ 1

0

(

3

2
− y

)

dy =

[

3y

2
− y2

2

]1

0

= 1.

Example 14.1.8. Compute
∫∫

R(x
2 + y)dA, where A = [0, 1] × [0, 1].

sol.

∫∫

R
(x2+y)dA =

∫ 1

0

∫ 1

0
(x2+y)dxdy =

∫ 1

0
[

∫ 1

0
(x2+y)dx]dy =

∫ 1

0
(
1

3
+y)dy =

5

6
.

Example 14.1.9. Find
∫∫

R f(x, y) dxdy. Here the function f = y(x3 − 12x)

takes both positive and negative values and R is given by −2 ≤ x ≤ 1,

0 ≤ y ≤ 1.

sol.

∫∫

R
y(x3 − 12x)dxdy =

∫ 1

0

[
∫ 1

−2
y(x3 − 12x)dx

]

dy =
57

4

∫ 1

0
ydy =

57

8
.
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14.2 Double integral over general regions

So far we have defined double integral over a rectangle. How can we define

double integral on general domains?

Now we define the integral of more general functions.

b

b b b
b

b

bbbb
b

Figure 14.3: Partitioning of nonrectangular region

We proceed as befre, but only count the sub-rectangle completely contained

in the region:

S = R(f) =
∑

f(cij)∆Aij, (14.3)

where the sum is taken over subrectangles completely contained in the region.

If this limit exists as ‖P‖ → 0 we define it as a double integral.

For computational purpose, we classify the regions.

Definition 14.2.1. Elementary regions

x

y

a x b

y = φ1(x)

y = φ2(x)

(a) region of type 1

x

y

x = ψ2(y)

x = ψ1(y)

c

y

d

(b) region of type 2

Figure 14.4: region of type 1, region of type 2
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There are three kind of elementary regions: Let y = φ1(x), y = φ2(x) be

two continuous functions satisfying φ1(x) ≤ φ2(x) for x ∈ [a, b]. Then the

region

D = {(x, y) | a ≤ x ≤ b, φ1(x) ≤ y ≤ φ2(x)}

is called region of type 1.

Now change the role of x, y as in figure 14.4 (b). If x = ψ1(y), x = ψ2(y),

satisfies ψ1(y) ≤ ψ2(y) for y ∈ [c, d], then the region determined by

D = {(x, y) | c ≤ y ≤ d, ψ1(y) ≤ x ≤ ψ2(y)}

is called region of type 2. The region that is both Type 1 and Type 2 is

called region of type 3. These are called elementary regions.

x

y

c

y0

d

a x0 b

Figure 14.5: Region of type 3

Properties of integral

Theorem 14.2.2. Let f , g be integrable over R, R1, R2. Then we have

(1)

∫∫

R
cf(x, y) dxdy = c

∫∫

R
f(x, y) dxdy, ( c is constant).

(2)

∫∫

R
(f(x, y) + g(x, y)) dxdy

=

∫∫

R
f(x, y) dxdy +

∫∫

R
g(x, y) dxdy.

(3) If f(x, y) ≥ 0,

∫∫

R
f(x, y) dxdy ≥ 0.

(4) If f(x, y) ≥ g(x, y),

∫∫

R
f(x, y) dxdy ≥

∫∫

R
g(x, y) dxdy.
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(5) If R1 and R2 do not meet, then for R = R1 ∪R2

∫∫

R
f(x, y) dxdy =

∫∫

R1

f(x, y) dxdy +

∫∫

R2

f(x, y) dxdy.

(6)

∣

∣

∣

∣

∫∫

R
fdA

∣

∣

∣

∣

≤
∫∫

R
|f |dA.

Integrals over elementary regions(by extension to 0)

Now we are ready to define the integral of f defined on an elementary region.

The idea is to extend the function to a rectangular domain. Given a continuous

function f on D where D is an elementary region

D = {(x, y) | φ1(x) ≤ y ≤ φ2(x), a ≤ x ≤ b},

we consider a rectangle which contains D and extend f to R outside D by

zero:

f ext(x, y) =







f(x, y), (x, y) ∈ D
0, (x, y) ∈ R \D.

Then f ext has discontinuities on the graphs of y = φ1(x), y = φ2(x), a ≤ x ≤ b.

Hence it is integrable by Theorem ??. Now we can define the integral of f

over R.

Definition 14.2.3. The integral of f is defined as

∫∫

D
f(x, y) dA :=

∫∫

R
f ext(x, y) dA.

From this definition we have an important result useful in the computation

of double integral.

Theorem 14.2.4 (Fubini’s Theorem (Stronger form)). Let f be a continuous

on an elementary region D ⊂ R.

(1) If D is a domain of type 1, i.e, D = {(x, y) : φ1(x) ≤ y ≤ φ2(x), a ≤
x ≤ b} for some continuous functions φ1, φ2, then f is integrable on D

and
∫∫

D
f(x, y) dA =

∫ b

a

[

∫ φ2(x)

φ1(x)
f(x, y) dy

]

dx.
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R
f = 0D

x

y

z

fext = f(x, y)

Figure 14.6: Extension of a function

(2) Similarly if D is a domain of type 2, i.e, D = {(x, y) : ψ1(y) ≤ x ≤
ψ2(y), c ≤ y ≤ d} for some continuous functions ψ1, ψ2, then

∫∫

D
f(x, y) dA =

∫ d

c

[

∫ ψ2(y)

ψ1(y)
f(x, y) dx

]

dy.

Proof. By Fubini theorem, we have

∫∫

D
f(x, y) dA =

∫∫

D
f ext(x, y) dA (14.4)

=

∫ b

a

∫ d

c
f ext(x, y) dydx (14.5)

=

∫ d

c

∫ b

a
f ext(x, y) dxdy. (14.6)

For type 1 region, we see

∫ d

c
f ext(x, y) dy =

∫ φ2(x)

φ1(x)
f(x, y) dy.

Hence by (14.5) we obtain (1). For type 2 region, we see

∫ b

a
f ext(x, y) dx =

∫ ψ2(y)

ψ1(y)
f(x, y) dx.

Hence by (14.5) we obtain (2).
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Example 14.2.5. Find the following integral when D : 0 ≤ x ≤ 1, x ≤ y ≤ 1

∫∫

D
(x+ y2) dxdy.

1

y = x

Figure 14.7: Region 0 ≤ x ≤ 1, x ≤ y ≤ 1

sol. Use Fubini’s theorem

∫ 1

0

∫ 1

x
(x+ y2) dydx =

∫ 1

0

[

xy +
y3

3

]1

x

dx

=

∫ 1

0

(

x+
1

3
− x2 − x3

3

)

dx

=

[

x2

2
+
x

3
− x3

3
− x4

12

]1

0

=
5

12
.

Example 14.2.6. Find
∫∫

D x
2y dA where D is given by 0 ≤ x, 3x2 ≤ y ≤

4− x2. (Figure 14.8)

sol. Two curves y = 3x2 and y = 4 − x2 meet at the point (1, 3). Hence

the integral becomes

∫ 1

0

∫ 4−x2

3x2
x2y dydx =

∫ 1

0

(

x2y2

2

)∣

∣

∣

∣

4−x2

y=3x2
dx

=

∫ 1

0

(

x2

2
((4− x2)2 − (3x2)2)

)

dx

=
1

2

∫ 1

0
x2(16− 8x2 + x4 − 9x4) dx =

136

105
.

Example 14.2.7. Find
∫∫

D(x
3y+cosx) dA where D is given by 0 ≤ x ≤ π/2,

0 ≤ y ≤ x.



14.2. DOUBLE INTEGRAL OVER GENERAL REGIONS 159

b (1, 3)

4

2

y = 4− x2

y = 3x2

Figure 14.8: Domain of integration of example 14.2.6

sol.

∫∫

D
(x3y + cos x) dA

=

∫ π/2

0

∫ x

0
(x3y + cos x)dy dx

=

∫ π/2

0

[

x3y2

2
+ y cos x

]x

y=0

dx =

∫ π/2

0

(

x5

2
+ x cos x

)

dx

=
π6

768
+
π

2
− 1.

Example 14.2.8. Find volume of tetrahedron bounded by the planes x =

0, y = 0, z = 0, y − x+ z = 1. (Fig 14.9)

sol. We let z = f(x, y) = 1− y + x. Then the volume of tetrahedra is the

volume under the graph of f . Hence

∫∫

D
(1− y + x)dA =

∫ 0

−1

∫ 1+x

0
(1− y + x)dydx

=

∫ 0

−1

[

(1 + x)y − y2

2

]1+x

y=0

dx =
1

6
.

Example 14.2.9. Let D be given by D = {(x, y)|0 ≤ x ≤ ln 2, 0 ≤ y ≤
ex − 1}. Express the double integral

∫∫

D
f(x, y) dA
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x

y

z

Figure 14.9: Tetrahedra z = x− y + 1 of

y

π

y = x

x

Figure 14.10: 0 ≤ x ≤ π, x ≤ y ≤ π

in two iterated integrals.

sol. See figure 14.11. To view it as a region of type 1, the points of inter-

section is y = 0, y = ex − 1(0 ≤ x ≤ ln 2). Hence

∫ ln 2

0

∫ ex−1

0
f(x, y) dydx.

As a y-simple region, the points of intersection is x = ln(y + 1), x =

ln 2(0 ≤ y ≤ 1). So the integral is

∫ 1

0

∫ ln 2

ln(y+1)
f(x, y) dxdy.
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Example 14.2.10. Given domain D (Fig. 14.12) by

4− 2x ≤ y ≤ 4− x2, 0 ≤ x ≤ 2.

Find
∫∫

D
(1 + x) dA.

sol. This region is of third kind.

∫ 2

0

∫ 4−x2

4−2x
(1 + x) dydx =

∫ 2

0
[(1 + x)y]y=4−x2

y=4−2x dx

=

∫ 2

0
(−x3 + x2 + 2x) dx

=

[

−x
4

4
+
x3

3
+ x2

]2

0

=
8

3
.

On the other hand, as a function of y x = (4− y)/2, x =
√
4− y. So

∫ 4

0

∫

√
4−y

(4−y)/2
(1 + x) dxdy =

∫ 4

0

[

x+
x2

2

]x=
√
4−y

x=(4−y)/2
dy

=

∫ 4

0

(

√

4− y − (4− y)2

8

)

dy

=

[

−2

3
(4− y)3/2 +

(4− y)3

24

]4

0

=
2

3
43/2 − 43

24
=

8

3
.

x

y

1

ln 2

Figure 14.11: 0 ≤ y ≤ ex − 1, 0 ≤ x ≤ ln 2
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y

y = 4− 2x

y = 4− x2

2
x

4

Figure 14.12: 4− 2x ≤ y ≤ 4− x2

D1

D4

Figure 14.13: Region can be divided

Example 14.2.11 (Breaking into several pieces).

∫

D
f dA =

∫

D1

f dA+

∫

D2

f dA+

∫

D3

f dA+

∫

D4

f dA.

See Figure 14.13

14.3 Area by double integral and Change order of

integration

Suppose D is of type 3. Then it is given by two ways:

φ1(x) ≤ y ≤ φ2(x), a ≤ x ≤ b
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and

ψ1(y) ≤ x ≤ ψ2(y), c ≤ y ≤ d.

Thus by Theorem 14.2.4

∫∫

D
f(x, y)dA =

∫ b

a

∫ φ2(x)

φ1(x)
f(x, y)dydx =

∫ d

c

∫ ψ2(y)

ψ1(y)
f(x, y) dxdy.

Example 14.3.1. Compute by change of order of integration

∫ a

0

∫ (a2−x2)1/2

0
(a2 − y2)1/2 dydx.

sol.

∫ a

0

∫ (a2−x2)1/2

0
(a2 − y2)1/2 dydx =

∫ a

0

∫ (a2−y2)1/2

0
(a2 − y2)1/2 dxdy

=

∫ a

0
[x(a2 − y2)1/2]

(a2−y2)1/2
0 (a2 − y2)1/2 dy

=

∫ a

0
(a2 − y2) dy =

2a3

3
.

There are cases when the given integral is almost impossible to find, but if we

change the order the integral can be found.

Example 14.3.2. Find
∫ π

0

∫ π

x

sin y

y
dydx.

sol. It is not easy to find the integral as the given form. But if we change

the order of integration (fig ??)

∫ π

0

∫ π

x

sin y

y
dydx =

∫ π

0

∫ y

0

sin y

y
dxdy

=

∫ π

0

[

sin y

y
x

]x=y

x=0

dy

=

∫ π

0
sin y dy = [− cos y]π0 = 2.



164 CHAPTER 14. MULTIPLE INTEGRALS

x
b b

b

y

y = log x

1 2

Figure 14.14: Change order of integration

x

y

b

4

2
y =

√

x

Figure 14.15: Change order of integration

Example 14.3.3. Find

∫ 1

0

∫ 1

y

ex − 1

x
dx dy.

Example 14.3.4. Find

∫ 2

0

∫ 4

y2
y cos(x2) dx dy.

sol. It is very difficult to find
∫ 4
y2 cos(x

2) dx. However, if we change the

order of integration to have (Figure 14.15)

∫ 2

0

∫ 4

y2
cos(x2) dx dy =

∫ 4

0

∫

√
x

0
y cos(x2) dy dx

=

∫ 4

0

y2

2
cos(x2)

∣

∣

∣

∣

√
x

0

dx

=

∫ 4

0

x

2
cos(x2) dx

=
1

4

∫ 16

0
cos u du =

1

4
sin 16.
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14.3.1 Average value

Theorem 14.3.5. Suppose f : D → R is continuous on a region D and

m = minD f(x, y) ≤ f(x, y) ≤M = maxD f(x, y). Then we have

m ≤ 1

A(D)

∫∫

D
f dA ≤M. (14.7)

Example 14.3.6. Estimate

∫

D

1
√

1 + x6 + y7
dxdy

where D is the unit square. Then we can easily see the following holds.

1√
3
≤ 1
√

1 + x6 + y7
≤ 1.

Theorem 14.3.7. If f is continuous over a closed, bounded region D, then

there is a point (x0, y0) ∈ D such that

f(x0, y0) =
1

A(D)

∫∫

D
f.

14.4 Double integral in polar coordinate form

Sometimes a domain is given in polar coordinate. In this case the double

integral is easier to perform in polar coordinate. We are given a region D by

D = {(r, θ) | φ1(θ) ≤ r ≤ φ2(θ), α ≤ θ ≤ β}.

Its boundary is described by the curves r = φ1(θ), r = φ2(θ) and θ = α, θ = β.

We divideD by the curves r = constant and the lines given by θ = constant(fig

14.16), i.e., with ∆r = r/m, ∆θ = (β − α)/l, we have

r0 = ∆r, r1 = 2∆r, . . . , rm+1 = m∆r,

and

θ0 = α, θ1 = α+∆θ, . . . , θl+1 = α+ l∆θ = β.

Each small curved rectangle shaped region is called a polar rectangle. It is

obtained by subtracting the inner sector from the outer sector (Fig. 14.17).
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(rk, θk)

rk∆θk

∆rk
b

Figure 14.16: Partition in polar coordinate

b
(rk, θk)rk −∆r/2

rk +∆r/2

∆r

∆θ
b

(rk, θk)rk

rk +∆r

∆r

∆θ

Figure 14.17: Area of polar sector

We label them as ∆A1, . . . ,∆An.

Choose any point (rk, θk) in ∆Ak and consider the Riemann sum

R(f, n) = Sn =
n
∑

k=1

f(rk, θk)∆Ak.

Let δ = maxi,j{∆ri,∆θj}. If the limit limn→∞R(f, n) exists (as δ approaches

0), then it is defined as the integral of f on D and we write

∫∫

D
f(r, θ) dA.

How to evaluate the integral
∫∫

D f(r, θ) dA? For convenience assume the

point (rk, θk) is at the center of ∆Ak(Figure 14.17, left). The area of ∆Ak is

1

2

(

rk +
∆r

2

)2

∆θ − 1

2

(

rk −
∆r

2

)2

∆θ = rk∆r∆θ.
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Another way: If we let rk denote the inner radius, the area of outer sector

minus inner sector(figure 14.17, right) is

1

2
(rk +∆r)2∆θ − 1

2
r2k∆θ = rk∆r∆θ +

1

2
∆r2∆θ.

Hence the Riemann sum is

R(f, n) = (double sum)

n
∑

k=1

f(rk, θk)rk∆r∆θ +O(∆r2∆θ).

As n→ ∞, this approaches
∫∫

D f(r, θ)r drdθ.

Proposition 14.4.1. If D is given by D = {(r, θ) | φ1(θ) ≤ r ≤ φ2(θ), α ≤
θ ≤ β}, the integral of f can be evaluated as the iterated integral:

∫∫

D
f(r, θ) dA =

∫ β

α

∫ φ2(θ)

φ1(θ)
f(r, θ)r drdθ.

Example 14.4.2. D is the disk of radius a about the origin. Find

∫∫

D
ex

2+y2 dA.

sol. Use polar coordinate x2 + y2 = r2, dA = rdrdθ. Then

∫ 2π

0

∫ a

0
er

2
r drdθ =

∫ 2π

0

[

er
2

2

]r=a

r=0

dθ = π(ea
2 − 1).

Example 14.4.3. Find the area of the region inside the cardioid r = 1−sin θ.

sol. Refer to Fig 14.18 for the cardioid. We see 0 ≤ r ≤ 1− sin θ

∫ 2π

0

∫ r=1−sin θ

r=0
r drdθ =

∫ 2π

0

[

r2

2

]r=1−sin θ

r=0

dθ

=

∫ 2π

0

(1− sin θ)2

2
dθ

=
1

2

∫ 2π

0
(1− 2 sin θ + sin2 θ) dθ

=
1

2

∫ 2π

0
(1− 2 sin θ +

1− cos 2θ

2
) dθ
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1

−1

−2

1−1

r = 1− sin θ

Figure 14.18: r = 1− sin θ

=
1

2

[

θ + 2cos θ +
θ

2
− sin 2θ

4

]2π

0

=
3

2
π.

Example 14.4.4. The area inside of the cardioid r = 1 + cos θ and outside

of the unit circle r = 1.

1

−1

1 2−1

r = 1 + cos θ

Figure 14.19: Find the limits of integral r = 1, r = 1 + cos θ

Example 14.4.5. Find the area of the region bounded by the curve r =

1 + 2 cos θ except the smaller one.
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3

1

1

Figure 14.20: r = 1 + 2 cos θ

sol. This graph is symmetric about x-axis. When θ = 0, it passes (3, 0),

and when θ = π/2 it passes (0, 1), when θ = 2π/3, it passes the origin, when

θ = π, passes (1, 0). Hence the graph is as figure 14.20. Hence the area

bounded by the curve is

2

∫ 2π/3

0

∫ 1+2 cos θ

0
r drdθ =

∫ 2π/3

0

[

r2
]1+2 cos θ

0
dθ

=

∫ 2π/3

0
(1 + 4 cos θ + 4cos2 θ) dθ

= [θ + 4 sin θ + 2θ + sin 2θ]
2π/3
0

= 2π +
3
√
3

2
.

Meanwhile the area inside the inner curve is

2

∫ π

2π/3

∫ 1+2 cos θ

0
r drdθ =

∫ π

2π/3

[

r2
]1+2 cos θ

0
dθ

=

∫ π

2π/3
(1 + 4 cos θ + 4cos2 θ) dθ

= [θ + 4 sin θ + 2θ + sin 2θ]π2π/3

= π − 3
√
3

2
.

So the desired area is (2π + 3
√
3/2)− (π − 3

√
3/2) = π + 3

√
3.

More generally, we obtain (Need to explain the mapping T )
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r

θ

D∗

a b

θ1

θ2

y

x

D

θ2

a b

θ1

Example 14.4.6. Change the integral
∫∫

f(x, y) dxdy to polar coordinate.

sol. Since x = r cos θ, y = r sin θ, we can let T (r, θ) = (r cos θ, r sin θ).

Then Jacobian is

∣

∣

∣

∣

∣

∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

cos θ −r sin θ
sin θ r cos θ

∣

∣

∣

∣

∣

= r.

Hence
∫∫

f(x, y) dxdy =

∫∫

f(r cos θ, r sin θ) rdrdθ.

Example 14.4.7. D is between two concentric circles: x2+ y2 = 4, x2+ y2 =

1(x, y ≥ 0). Find the integral

∫∫

D

√

x2 + y2 + 1 dxdy.

Here D is the quoter of the annulus
√
1− x2 ≤ y ≤

√
4− x2.

sol. Use polar coordinate. We see the domain of integration in (r, θ) is

D∗ = {(r, θ)|1 ≤ r ≤ 2, 0 ≤ θ ≤ π/2}.
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∫∫

D

√

x2 + y2 + 1 dxdy =

∫∫

D∗

√

r2 + 1r drdθ

=

∫ π/2

0

∫ 2

1

1

2

√

r2 + 1(2r)drdθ

=

∫ π/2

0

1

3
(r2 + 1)3/2|21dθ

=

∫ π/2

0

1

3
(53/2 − 23/2)dθ =

π

6
(53/2 − 23/2).

Example 14.4.8. D is the region between two concentric circles in the first

quadrant: 1 ≤ x2 + y2 ≤ 4, (x, y ≥ 0). Find the integral

∫∫

D
log(x2 + y2)dxdy.

sol. Use polar coordinate. Since the boundary of the region are described by

r = 1, 2, 0 ≤ θ ≤ π/2, we let D∗ = [1, 2]× [0, π/2] and T (r, θ) = (r cos θ, sin θ).

Then T (D∗) = D and

∫∫

D
log(x2 + y2)dxdy =

∫∫

D∗

(log r2)rdrdθ

=

∫ 2

1

∫ π/2

0
2r log rdθdr

=

∫ 2

1
πr log rdr

= π

[

r2

2
log r − r2

4

]2

1

= π(2 log 2− 3

4
).

Example 14.4.9 (The Gaussian integral). Show that

∫ ∞

−∞
e−x

2
dx =

√
π.
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To compute this, let us first observe

(
∫ ∞

−∞
e−x

2
dx

)2

=

∫ ∞

−∞
e−x

2
dx

∫ ∞

−∞
e−y

2
dy

=

∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2)dxdy

= lim
a→∞

∫∫

Da

e−(x2+y2)dxdy.

Thus it is necessary to compute

∫∫

Da

e−(x2+y2)dxdy.

By

∫∫

Da

e−(x2+y2)dxdy =

∫ 2π

0

∫ a

0
e−r

2
r drdθ =

∫ 2π

0

(

−1

2
e−r

2

)∣

∣

∣

∣

a

0

= −1

2

∫ 2π

0
(e−a

2 − 1)dθ = π(1− e−a
2
).

Let a→ ∞. Then we obtain the result.

Example 14.4.10. Evaluate

∫∫

R
ex

2+y2dxdy,

where R is the semi circular region 0 ≤ y ≤
√
1− x2.

To compute this, we see

∫∫

R
ex

2+y2dxdy =

∫ π

0

∫ 1

0
er

2
rdrdθ

=

∫ π

0

1

2
(e− 1)dθ

=
π

2
(e− 1).

14.5 Triple integrals in rectangular coordinates

Definition 14.5.1. Assume D = [a, b] × [c, d] × [p, q] be a box. Then we

subdivide intervals [a, b], [c, d] and [p, q] into n -intervals
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x y

z

Figure 14.21: partition of a box region

a = x0 < x1 < · · · < xn = b,

c = y0 < y1 < · · · < yn = d,

p = z0 < z1 < · · · < zn = q,

and call the resulting subboxes Djk = [xi−1, xi]× [yj−1, yj ]× [zk−1, zk] a par-

tition of D.

Definition 14.5.2. We let

∆xi = xi − xi−1, ∆yj = yj − yj−1 and ∆zk = zk − zk−1.

We partition the box into small n3- subboxes as in Fig 14.21, and de-

note the volume of each subbox as ∆Vijk (i, j, k = 1, . . . , n) and let ‖P‖ =

maxi,j,k{∆xi,∆yj,∆zk}. Then the Riemann sum becomes

R(f, n) = Sn =

n
∑

i,j,k=1

f(cijk)∆Vijk.

Here cijk is any point in the subbox Dijk.

Definition 14.5.3. If limn Sn = S exists independently of the choice of cijk,

then we say f is integrable in D and call S the triple integral and we write

∫∫∫

D
fdV,

∫∫∫

D
f(x, y, z)dV, or

∫∫∫

D
f(x, y, z)dxdydz.
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Reduction to iterated integral

Theorem 14.5.4 (Fubini’s theorem). Suppose f is continuous on D = [a, b]×
[c, d]× [p, q]. Then the triple integral

∫∫∫

D f(x, y, z)dxdydz equals with any of

the following integrals.

∫ q

p

∫ d

c

∫ b

a
f(x, y, z) dxdydz,

∫ q

p

∫ b

a

∫ d

c
f(x, y, z) dydxdz

∫ b

a

∫ d

c

∫ q

p
f(x, y, z) dzdydx, etc.

Example 14.5.5.
∫∫∫

D
ex+y+zdV,

where D is the unit cube at origin.

Elementary regions

[sketch the region]

Definition 14.5.6. A region D is elementary regions if the points lie be-

tween graph of continuous functions of two variables, and the domain of these

functions is elementary. If f is continuous on D, then we extend f on a box

E containing D

f ext(x, y, z) =







f(x, y, z), (x, y, z) ∈ D

0, (x, y, z) ∈ E \D

and define
∫

D
fdV ≡

∫∫∫

D
fdV =

∫∫∫

E
f extdV.

If f = 1, the volume of D is defined as

V =

∫∫∫

D
dV.

Suppose R is an elementary region in xy-plane and there are continuous

functions γ1(x, y), γ2(x, y) such that

D = {(x, y, z) | γ1(x, y) ≤ z ≤ γ2(x, y), (x, y) ∈ R}. (14.8)

Then this is called an elementary region of type 1.



14.5. TRIPLE INTEGRALS IN RECTANGULAR COORDINATES 175

y =
φ
1 (x)

y =
φ
2 (x)

z =
γ1 (x, y)

z =
γ2 (x, y)

z

x
y

b

a

Figure 14.22: elementary region of type 1

If roles of x, z are interchanged, i.e,

D = {(x, y, z) | γ1(y, z) ≤ x ≤ γ2(y, z), (y, z) ∈ R} (14.9)

for some elementary region R in (y, z)-plane, then it is called an elementary

region of type 2.

Similarly, we can define an elementary region of type 3 and an ele-

mentary region of type 4.

Example 14.5.7. Describe the unit ball as an elementary region.

sol. The domain of defining function is described by

−
√

1− x2 ≤ y ≤
√

1− x2, −1 ≤ x ≤ 1

while the functions are

−
√

1− x2 − y2 ≤ z ≤
√

1− x2 − y2 on the unit disk.

Integrals over elementary regions

Suppose D is defined by

D = {(x, y, z) | γ1(x, y) ≤ z ≤ γ2(x, y), (x, y) ∈ R},
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x = γ2(y, z)

x = γ1(y, z)

z = φ
2(y)

z = φ
1

z

x y

c

d

Figure 14.23: elementary region of 2

where R is a type 1 region in xy-plane

R = {(x, y) | φ1(x) ≤ y ≤ φ2(x), a ≤ x ≤ b}.

Then the integral is given by

∫∫∫

D
f dV =

∫∫

R

∫

f(x, y, z) dzdA

=

∫ b

a

∫ φ2(x)

φ1(x)

∫ γ2(x,y)

γ1(x,y)
f(x, y, z) dzdydx.

Example 14.5.8. Find the volume of radius 1.

z =
√

1− x2
− y2

z = −

√

1− x2
− y2

z

y

x

Figure 14.24: x2 + y2 + z2 = 1
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sol. Unit ball is described by x2+y2+z2 ≤ 1. The volume is (Figure 14.24)

∫

D
1 dV, D = {(x, y, z) | x2 + y2 + z2 ≤ 1}.

Here we can take R = {(x, y) | x2 + y2 ≤ 1} and D = {−
√

1− x2 − y2 ≤ z ≤
√

1− x2 − y2, (x, y) ∈ R}. Hence

∫∫

R

∫

dzdydx =

∫∫

R

∫ z=
√

1−x2−y2

z=−
√

1−x2−y2
1 dzdydx

= 2

∫

R

√

1− x2 − y2 dydx

= 2

∫ 1

−1

∫

√
1−x2

−
√
1−x2

√

1− x2 − y2 dydx.

Let
√
1− x2 = a. The inner integral is area of semi circle or radius a

2

∫

√
1−x2

−
√
1−x2

√

1− x2 − y2 dy = 2

∫ a

−a

√

a2 − y2dy = a2π = (1− x2)π.

Hence

2

∫ 1

−1

∫

√
1−x2

−
√
1−x2

√

1− x2 − y2 dydx =

∫ 1

−1
(1− x2)π dx

=

[

(x− x3

3
)π

]1

−1

= 2(1− 1

3
)π =

4

3
π.

Other type of elementary regions can be described similarly. If a region can

be described in all three ways we call these regions symmetric elementary

regions.

Example 14.5.9. Let D be the region bounded by x + y + z = 1, x = 0,

y = 0, z = 0. Find

∫∫∫

D
(1 + 2z)dxdydz.

sol. Let R = {(x, y) | 0 ≤ y ≤ 1− x, 0 ≤ x ≤ 1}. Then D is described by

D = {(x, y, z) | 0 ≤ z ≤ 1− x− y, (x, y) ∈ R}



178 CHAPTER 14. MULTIPLE INTEGRALS

x+ y + z = 1

x+ y = 1

z

x

y

Figure 14.25: x+ y + z = 1

and integrate along z direction.

∫∫∫

D
(1 + 2z) dxdydz =

∫∫

R

[

z + z2
]1−x−y
0

dxdy

=

∫ 1

0

∫ y=1−x

y=0
(1− x− y + (1− x− y)2) dydx

=

∫ 1

0

[

−(1− x− y)2

2
− (1− x− y)3

3

]y=1−x

y=0

dx

=

∫ 1

0

(

(1− x)2

2
+

(1− x)3

3

)

dx =
1

4
.

b

b

x
y

z

2

z = x2 + y2

Figure 14.26: z = x2 + y2, z = 2

Example 14.5.10. Let W be bounded by x = 0, y = 0, z = 2 and the surface

z = x2 + y2 where x ≥ 0, y ≥ 0. Find
∫∫∫

W x dxdydz.
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sol. Method1. We describe the region by type 1.

0 ≤ x ≤
√
2, 0 ≤ y ≤

√

2− x2, x2 + y2 ≤ z ≤ 2.

∫∫∫

W
x dxdydz =

∫

√
2

0

[

∫

√
2−x2

0
(

∫ 2

x2+y2
x dz)dy

]

dx

=
8
√
2

15
.

Method2. We describe the region by type 2: Solving for x, i.e, 0 ≤ x ≤
(z − y2)1/2, (y, z) ∈ R where R is given by the relation

0 ≤ z ≤ 2, 0 ≤ y ≤ z1/2.

Then

∫∫∫

W
x dxdydz =

∫∫

R

(

∫ (z−y2)1/2

0
xdx

)

dydz

=

∫ 2

0

∫ z1/2

0

z − y2

2
dydz

=

∫ 2

0

∫ z1/2

0

z − y2

2
dydz

=

∫ 2

0

zy − y3

3

2

∣

∣

∣

∣

∣

z1/2

0

dz

=

∫ 2

0

z3

3
dz =

8
√
2

15
.

Example 14.5.11 (Example 1 p.911). Find the volume of the region D

bounded by z = x2 + 3y2 and z = 8− x2 − y2.

sol. We describe the region by type 1. First find the intersections of two

surfaces. Set x2 + 3y2 = 8 − x2 − y2 to get x2 + 2y2 = 4. The the domain is

the ellipse x2 + 2y2 = 4.

−2 ≤ x ≤ 2, −
√

(4− x2)/2 ≤ y ≤
√

(4− x2)/2, x2+3y2 ≤ z ≤ 8−x2−y2.
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V (D) =

∫∫∫

D
dzdxdy =

∫ 2

−2

[

2

∫

√
(4−x2)/2

0
(8− 2x2 − 4y2)dy

]

dx

=

∫ 2

−2

[

2(8− 2x2)y − 4

3
y3
]

√
(4−x2)/2

0

dx

= 8π
√
2.

Example 14.5.12. Evaluate

∫ 1

0

∫ x

0

∫ 2

x2+y2
dzdydx.

sol. Sketch region first.

∫ 1

0

∫ x

0

∫ 2

x2+y2
dzdydx =

∫ 1

0

∫ x

0
(2− x2 − y2)dydx

=

∫ 1

0

∫ x

0
(2y − x2y − y3

3
)

∣

∣

∣

∣

x

0

dx

=

∫ 1

0

∫ x

0
(2x− 4x3

3
)dx = x2 − x4

3

∣

∣

∣

∣

1

0

=
2

3
.

Example 14.5.13. Find the common region of two cylinders (Figure 14.27)

x2 + y2 ≤ 1, x2 + z2 ≤ 1 (z ≥ 0).

sol.

∫∫

x2+y2≤1

∫

√
1−x2

0
dzdxdy =

∫ 1

−1

∫

√
1−x2

−
√
1−x2

√

1− x2dydx

= 2

∫ 1

−1
(1− x2)dx

= 2

[

x− x3

3

]1

−1

= 4(1− 1

3
) =

8

3
.

Example 14.5.14. Find the region bounded by two paraboloid z = x2 + y2

and z = 2− 3x2 − y2. (Figure 14.28)
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x
y

z

x2 + y2 = 1

x2 + z2 = 1

Figure 14.27: common region of two cylinders

sol. The intersection is the curve x2 + y2 = 2− 3x2 − y2, i.e, 2x2 + y2 = 1.

If we let R = {(x, y) : 2x2 + y2 ≤ 1} this region is 1st kind on R. Hence

∫∫∫

D
dxdydz =

∫∫

2x2+y2≤1
(2− 3x2 − y2)− (x2 + y2) dxdy

=

∫∫

2x2+y2≤1
(2− 4x2 − 2y2) dxdy.

Now use polar coordinate x = r cos θ/
√
2, y = r sin θ. Then dxdy = r/

√
2drdθ.

Hence

1√
2

∫ 2π

0

∫

r≤1
(2− 2r2)r drdθ

=
1√
2

∫ 2π

0

[

r2 − 2r4

4

]1

0

dθ =
π√
2
.
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√

21
x

y

z = x2 + y2

z = 2− 3x2
− y2

Figure 14.28: z = x2 + y2, z = 2− 3x2 − y2

Average

In R
n(n = 1, 2, 3), the average of a function f defined on I( D or W )is defined

as

fav =

∫ b
a f(x)dx
∫ b
a dx

=

∫ b
a f(x)dx

length of [a, b]
, (14.10)

fav =

∫∫

D f(x, y)dxdy
∫∫

D dA
=

∫∫

D f(x, y)dxdy

area of D
, (14.11)

fav =

∫∫∫

W f(x)dx
∫∫∫

W dV
=

∫∫∫

W f(x)dx

volume of W
. (14.12)

Example 14.5.15. Find average of f(x, y) = x sin2(xy) over D = [0, π] ×
[0, π].

14.6 Mass, Moments and Center of Mass

14.6.1 Mass and Moments

Moment in 1 D

When a material with density δ(x) is placed on an interval I of the x- axis,

then the mass on the part [x, x + ∆x] is (approx.) δ(x)∆x. The total mass

lying on the interval I is ≈∑i δ(xi)∆xi. Taking the limit,

M =

∫

I
δ(x)dx
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and the moment is
∫

I
xδ(x) dx.

We choose a point x̄ so that the moment w.r.t x̄ is zero.

∫

I
(x− x̄)δ(x) dx = 0 ⇒ x̄ =

∫

xδ(x) dx
∫

δ(x) dx
.

Moment in 2 D

For 2-D, we have

Definition 14.6.1 (Moment, center of mass). Let δ(x, y) be the density of

some material lying on a region R in the plane. The mass of this material

occupying the place [x, x + ∆x] × [y, y + ∆y] is ≈ δ(x, y)∆x∆y, and in the

limit

The total mass M =

∫∫

R
δ(x, y)dxdy,

The moment w.r.t x-axis Mx =

∫∫

R
yδ(x, y) dxdy,

The moment w.r.t y-axis My =

∫∫

R
xδ(x, y) dxdy.

The center of mass (x̄, ȳ) is defined as

x̄ =
My

M
=

∫∫

R xδ(x, y) dxdy
∫∫

R δ(x, y) dxdy
,

ȳ =
Mx

M
=

∫∫

R yδ(x, y) dxdy
∫∫

R δ(x, y) dxdy
.

The center of mass is defined so that it satisfies

Mx̄ =

∫∫

R
(x− x̄)δ(x, y) dxdy = 0,

Mȳ =

∫∫

R
(x− ȳ)δ(x, y) dxdy = 0.

Example 14.6.2. A solid body occupies the region between y = x, y = x2.

The density is given by δ(x, y) = x. Find the mass and Mx.
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x

y

O

b

x̃x̄

ȳ (x̄, ȳ) b(x̃, ỹ)

Center of mass

∆m = ρf(x̃)∆x

Figure 14.29: Vertical strip of mass ∆m

sol. Mass is

M =

∫ 1

0

∫ x

x2
x dydx =

∫ 1

0
x [y]y=x

y=x2
dx

=

∫ 1

0
(x2 − x3)dx =

[

x3

3
− x4

4

]1

0

=
1

12

and Mx is

Mx =

∫ 1

0

∫ x

x2
yxdydx =

∫ 1

0
x

[

y2

2

]y=x

y=x2
dx

=

∫ 1

0

x

2
(x2 − x4)dx =

[

x4

8
− x6

12

]1

0

=
1

24
.

When the density δ = 1, the center of mass is also called the centroid.

Example 14.6.3. Find the centroid of the region bounded by y = x, y = x2.

sol.

M =

∫ 1

0

∫ x

x2
1dydx =

∫ 1

0
[y]xx2 dx =

∫ 1

0
(x− x2)dx =

1

6
,

Mx =

∫ 1

0

∫ x

x2
ydydx =

∫ 1

0

[

y2

2

]x

x2
dx =

∫ 1

0
(
x2

2
− x4

2
)dx =

1

15
,

My =

∫ 1

0

∫ x

x2
xdydx =

∫ 1

0
x [y]xx2 dx =

∫ 1

0
(x2 − x3)dx =

1

12
.

Hence

x̄ =
1/12

1/6
=

1

2
, ȳ =

1/15

1/6
=

2

5
.
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x y

z

Figure 14.30: Region of 0 ≤ z ≤ 4− x2 − y2

Moment in 3 D

For 3-D, we have

Definition 14.6.4 (Moment, center of mass). Let δ(x, y, z) be the density of

some material occupying some region R in R
3. Then

The mass M =

∫∫

δ(x, y, z)dxdydz,

The moment w.r.t yz- plane Myz =

∫∫∫

R
xδ(x, y, z) dxdydz,

The moment w.r.t xz- plane Mxz =

∫∫∫

R
yδ(x, y, z) dxdydz,

The moment w.r.t xy- plane Mxy =

∫∫∫

R
zδ(x, y, z) dxdydz.

The center of mass (x̄, ȳ, z̄) is defined as

x̄ =
Myz

M
, ȳ =

Mxz

M
, z̄ =

Mxy

M
.

Example 14.6.5. Find the center of mass of a solid of constant density δ

bounded by the disk x2 + y2 ≤ 4 in the plan z = 0 and the paraboloid

z = 4− x2 − y2. (Fig 14.30)
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sol.

M =

∫ 1

0

∫ x

x2
1dydx =

∫ 1

0
[y]xx2 dx =

∫ 1

0
(x− x2)dx =

1

6
,

Mx =

∫ 1

0

∫ x

x2
ydydx =

∫ 1

0

[

y2

2

]x

x2
dx =

∫ 1

0
(
x2

2
− x4

2
)dx =

1

15
,

My =

∫ 1

0

∫ x

x2
xdydx =

∫ 1

0
x [y]xx2 dx =

∫ 1

0
(x2 − x3)dx =

1

12
.

Hence

x̄ =
1/12

1/6
=

1

2
, ȳ =

1/15

1/6
=

2

5
.

Moment of inertia

Assume a mass is occupying the region R. The moment of inertia w.r.t a line L is

IL =

∫∫∫

R
r2(x, y, z)δ(x, y, z) dxdydz,

where r(x, y, z) is the distance from the line L to the point. If L is the x (or

y, z) axis, the moment of inertia w.r.t a line x-axis is (resp.)

Ix =

∫∫∫

R
(y2 + z2)δ dV, Iy =

∫∫∫

R
(x2 + z2)δ dV, Iz =

∫∫∫

R
(x2 + y2)δ dV.

Example 14.6.6. A thin plate is covering the triangular region bounded by

x axis, x = 1, y = 2x. The plate density is δ = 6(x+ y+1). Find the moment

of inertia of the plate about the coordinate axes and the origin.

sol.

1

y = 2x

Ix =

∫ 1

0

∫ 2x

0
y2δ(x, y)dydx

=
∫ 1
0

∫ 2x
0 6y2(x+ y + 1)dydx

=

∫ 1

0

[

2xy3 +
3

2
y4 + 2y3

]y=2x

y=0

dx

=

∫ 1

0
(40x4 + 16x3) dx

=
[

8x5 + 4x4
]1

0
= 12.

Iy, I0 can be similarly obtained.
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14.7 Triple integrals in Cylindrical and Spherical

Coordinate

Cylindrical coordinate system

Given a point P = (x, y, z), we can use polar coordinate for (x, y)-plane. Then

it holds that

Cylindrical to Cartesain











x = r cos θ,

y = r sin θ,

z = z.

z

x y

z

θ

P (r, θ, z)

We say (r, θ, z) is cylindrical coordinate of P .

The expression (r, θ, z) is not unique.

Example 14.7.1. The set of all points r = a in cylindrical coordinate is

{(x, y, z) | x2 + y2 = a2}.

This is a cylinder (Figure 14.31).

Example 14.7.2. The equation r = 3cos θ gives

r2 = 3r cos θ ⇒ x2 + y2 = 3x.

This holds for all z. This is again a cylinder.

Example 14.7.3. Identify the surface given by the equation z = 2r in cylin-

drical coordinate.

sol. Squaring, we have z2 = 4r2 = 4(x2 + y2). The section z = c is

c2 = 4(x2 + y2), while with x = 0 we have z = ±y. With y = 0 we have

z = ±x. Thus this is a cone.
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r

z

x y

z

θ

(r, θ, z)

x

y

z

dθ

dr
rdθ

b
(r, θ)

dz

A sector of a cylinder

Figure 14.31: cylindrical coordinate

Example 14.7.4. Change the equation x2 + y2 − z2 = 1 to cylindrical coor-

dinate.

sol. r2 − z2 = 1.

14.7.1 Integration in Cylindrical Coordinate

Let D be any region in R
3. We describe it using the coordinate

x = r cos θ, y = r sin θ, z = z.

We partition the region D into small cylindrical wedges (Fig 14.31); Small

wedge given by

[rk, rk +∆rk]× [θk, θk +∆θk]× [zk, zk +∆zk]

has volume ∆Vk = ∆Ak∆zk=̇rk∆rk∆θk∆zk. So the sum
∑

k f(xk, yk, zk)∆Vk

approaches

∫∫∫

D
f(x, y, z) dxdydz =

∫∫∫

D∗

f(r cos θ, r sin θ, z)r dzdrdθ. (14.13)

Here D∗ is the region of described by the cylindrical coordinate (r, θ, z).
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How to integrate in cylindrical coordinate? (iterated integrals)

(1) Sketch the region D and its projection R on the xy plane.

(2) Find the z limits of integration: g1(r, θ) ≤ z ≤ g2(r, θ).

(3) Find the r limits of integration : h1(θ) ≤ r ≤ h2(θ).

(4) Find the θ limits of integration : α ≤ θ ≤ β and set

∫∫∫

D
f(x, y, z) dxdydz =

∫ β

α

∫ r=h2(θ)

r=h1(θ)

∫ z=g2(r,θ)

z=g1(r,θ)
f(r, θ, z)dzdrdθ.

Example 14.7.5. Find the centroid of the solid bounded by the cylinder

x2 + y2 = 4 between 0 ≤ z ≤ x2 + y2. Sol. We need (x̄, ȳ, z̄). By symmetry

we have x̄ = ȳ = 0. To find z̄ =
Mxy

M we need to compute

M =

∫∫∫

D∗

dz rdrdθ, Mxy =

∫∫∫

D∗

zdz rdrdθ.

(1) Sketch the region.

(2) Find the z limits of integration : 0 ≤ z ≤ x2 + y2 = r2.

(3) Find the r limits of integration : 0 ≤ r ≤ 2.

(4) Find the θ limits of integration : 0 ≤ θ ≤ 2π.

M =

∫ 2π

0

∫ 2

0

∫ r2

0
dz rdrdθ = 8π, Mxy =

∫ 2π

0

∫ 2

0

∫ r2

0
zdz rdrdθ =

32π

3
.

Therefore

z̄ =
Mxy

M
=

4

3
.

14.7.2 Integration in spherical coordinate system

We call (ρ, φ, θ) to be the spherical coordinate of P (x, y, z) if

(1) ρ is the distance from P to the origin

(2) φ is the angle that makes with positive z axis

(3) θ is the angle from cylindrical coordinate.
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ρ

φ

x

y

z

θ

P (ρ, φ, θ)
b

z

x y

ρ

∆θθ

ρ∆θ

ρ sinφ

φ
∆φ

ρ sinφ∆θ

ρ∆φ

Figure 14.32: Spherical coordinate

For the point P (x, y, z) we have

Spherical to Cartesian















x = ρ sinφ cos θ

y = ρ sinφ sin θ

z = ρ cosφ







ρ ≥ 0

0 ≤ θ < 2π

0 ≤ φ ≤ π







Example 14.7.6. (1) Find the spherical coord. of (1,−1, 1).

(2) Find the cartesian coord. of (3, π/6, π/4).

(3) Find the spherical coord. of (2,−3, 6).

(4) Find the spherical coord. of (−3,−3,
√
6).

sol. (1) ρ =
√
3.

φ = cos−1(
z

ρ
) = cos−1(

1√
3
) ≈ 0.955 ≈ 54.74o.

Since the point (1,−1) lies in the 4-th quadrant, we see

θ = 2π + arctan(
y

x
) = 2π + arctan(−1) =

7π

4
.
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(3) ρ =
√

22 + (−3)2 + 62 =
√

22 + (−3)2 + 62 = 7.

φ = cos−1(
z

ρ
) = cos−1

(

6

7

)

.

To find θ, we see tan θ = −3/2. Since the point lies in the fourth quadrant,

we have

θ = 2π + tan−1(−3/2).

(4)

ρ =
√
9 + 9 + 6 = 2

√
6

φ = cos−1

( √
6

2
√
6

)

= cos−1(
1

2
) =

π

3

θ = π + tan−1(
−1

−1
) = π +

π

4
=

5π

4
( 3rd quadrant).

Hence the spherical coordinate is (2
√
6, π/3, 5π/4).

Example 14.7.7. Express the surface x2 + y2 + (z − 1)2 = 1 using spherical

coordinate.

ρ2 − 2ρ cos φ+ 1 = 1 → ρ2 = 2φ.

Example 14.7.8. Express the cone x = x2 + y2 using spherical coordinate.

ρ cosφ = ρ sinφ→ φ =
π

4
.

Example 14.7.9. Express the surface (1) xz = 1 and (2) x2 + y2 − z2 = 1 in

spherical coordinate.

sol. (1) Since xz = ρ2 sinφ cos θ cosφ = 1, we have the equation

ρ2 sin 2φ cosφ = 2.

(2) Since x2+y2−z2 = x2+y2+z2−2z2 = ρ2−2(ρ cos φ)2 = ρ2(1−2 cos2 φ),

the equation is ρ2(1− 2 cos2 φ) = 1.
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z
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ρ
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∆θθ

ρ∆θ

ρ sinφ
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∆φ

ρ sinφ∆θ

ρ∆φ

Figure 14.33: Partition in spherical coordinate

Volumes in Spherical Coordinate-Geometric Derivation

Consider the small region bounded by the following conditions: (Fig.14.33)

ρ0 ≤ ρ ≤ ρ0 +∆ρ, φ0 ≤ φ ≤ φ0 +∆φ, θ0 ≤ θ ≤ θ0 +∆θ.

The region is between two spheres of radius ρ0, ρ0+∆ρ, two cones φ = φ0,

φ = φ0 +∆φ and two planes θ = θ0, θ = θ0 +∆θ.

Remark 14.7.10. This region corresponds to a ’box’ in (ρ, φ, θ) coordinate:

[ρ0, ρ0 +∆ρ]× [φ0, φ0 +∆φ]× [θ0, θ0 +∆θ].

First let us find the area of the region ∆S bounded by θ0 ≤ θ ≤ θ0 +∆θ,

φ0 ≤ φ ≤ φ0+∆φ on the sphere of radius ρ. The distance from a point on the

surface to the z-axis is ρ sinφ. When ∆ρ and ∆θ are small, this rectangular

like region on the sphere can be approximated by rectangle whose base is

ρ sinφ∆θ, height is ρ∆φ:

∆S ≈ ρ2 sinφ∆φ∆θ.

Now consider the solid formed by this region with thickness ∆ρ. Then its
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volume is

∆V ≈ ρ2 sinφ∆ρ∆φ∆θ.

Hence, as in the early discussions, the volume of D is defined as

∫∫∫

D
dV =

∫ ∫ ∫

ρ2 sinφdρ dφ dθ (14.14)

and for a continuous function f on D, the integral is defined as

∫∫∫

D
fdV =

∫ ∫ ∫

f(ρ, φ, θ)ρ2 sinφdρ dφ dθ. (14.15)

How to integrate in Spherical coordinates

Let D be the region determined by

D = {(ρ, φ, θ) : g1(φ, θ) ≤ ρ ≤ g2(φ, θ), h1 ≤ φ ≤ h2, α ≤ θ ≤ β} .

To evaluate
∫∫∫

D fdV =
∫ ∫ ∫

f(ρ, φ, θ)ρ2 sinφdρ dφ dθ we proceed as follows:

(1) Sketch the region D and project it onto xy plane.

(2) Find the ρ limit of the integration (g1(φ, θ) ≤ ρ ≤ g2(φ, θ))

(3) Find the φ limit of the integration (h1(θ) ≤ φ ≤ h2(θ))

(4) Find the θ limit of the integration

Example 14.7.11. Find the volume of the ”ice cream cone” D cut from the

solid ρ ≤ 1 by the cone φ = π/3.
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sol.

x
y

z

ρ ≤ 1, φ ≤ π/3

V =

∫∫∫

D
ρ2 sinφdρ dφ dθ

=

∫ 2π

0

∫ π/3

0

∫ 1

0
ρ2 sinφdρ dφ dθ

=

∫ 2π

0

∫ π/3

0

[

ρ3

3

]1

0

sinφdφdθ

=

∫ 2π

0

∫ π/3

0

1

3
sinφdφdθ

=

∫ 2π

0

[

−1

3
cosφ

]π/3

0

dθ

= 2π

(

−1

6
+

1

3

)

=
π

3
.

Example 14.7.12. Compute the moment of inertia of about z-axis of the

solid occupying the same region as above with density δ = 1.

sol. The moment of inertia is by spherical coordinate,

Iz =

∫∫∫

D
(x2 + y2)dV =

∫∫∫

D
ρ2 sin2 φρ2 sinφdρ dφ dθ.

Changing it to an iterated integral, we have

Iz =

∫∫∫

D
ρ4 sin3 φdρ dφ dθ

=

∫ 2π

0

∫ π/3

0

∫ 1

0
ρ4 sin3 φdρ dφ dθ

=

∫ 2π

0

∫ π/3

0

∫ 1

0

[

ρ5

5

]1

0

sin3 φdφdθ

=
1

5

∫ 2π

0

∫ π/3

0
(1− cos2 φ) sin φdφdθ

=
1

5

∫ 2π

0

[

− cosφ+
cos3 φ

3

]π/3

0

dθ

=
1

5

∫ 2π

0

(

−1

2
+ 1 +

1

24
− 1

3

)

dθ =
π

12
.
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Example 14.7.13. Compute

∫∫∫

W
exp(x2 + y2 + z2)3/2dV,

where W is the unit ball.

sol. By spherical coordinate,

∫∫∫

W
exp(x2 + y2 + z2)3/2dV =

∫∫∫

W ∗

ρ2eρ
3
sinφdθ dφ dρ.

Changing it to an iterated integral, we have

∫ 1

0

∫ π

0

∫ 2π

0
ρ2eρ

3
sinφdθ dφ dρ

= 2π

∫ 1

0

∫ π

0
ρ2eρ

3
sinφdφdρ

= 4π

∫ 1

0
ρ2eρ

3
dρ =

4

3
π(e− 1).

14.8 Substitution-Change of variables

We recall one variable case: If x : [a, b] → [c, d] is C1 function and f : [c, d] → R

is integrable, then the integral of f on [c, d] can be changed to an integral over

[a, b] by
∫ d

c
f(x)dx =

∫ b

a
f(x(t))x′(t)dt. (14.16)

Here the change in the integrand is just the linear scaling factor x′(t) and the

change in the domain is again a linear scaling to [a, b]. But for functions with

two or more variables, the situation is not so simple, because the shape of

domain change nontrivially.

∫∫

D
f(x, y)dxdy =

∫∫

D∗

f(x(u, v), y(u, v))( some factor )dudv (14.17)

Let F (u, v) = f(x(u, v), y(u, v)) and recalling the definition of integral, we see

lim
n→∞

n
∑

i=1

f(xi, yi)∆Ai(x, y) = lim
n→∞

n
∑

i=1

F (ui, vi)∆Ai(u, v). (14.18)
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y

x
eu0

v0

Figure 14.34: Inverse image of a polar rectangle

One-to-one map and onto map

Definition 14.8.1. A map T is called one to one on D∗, if for (u, v) and

(u′, v′) ∈ D∗, T (u, v) = T (u′, v′) implies (u, v) = (u′, v′).

Example 14.8.2. Show the polar coordinate map T = T (r, θ) = (r cos θ, r sin θ)

is not one-to-one. But it is so if we restrict to the region 0 ≤ θ < 2π.

Definition 14.8.3. A map T is called onto D, if for every point (x, y) ∈ D

there exists at least a point (u, v) ∈ D such that T (u, v) = (x, y).

Thus if T is onto then we can solve the equation T (u, v) = (x, y). If, in

addition, T is one-to-one, the solution is unique.

Example 14.8.4. A linear transform Ax from R
n to R

n given by a matrix A

is one to one and onto if det A 6= 0.

Example 14.8.5. Let D be the region in the first quadrant lying between

concentric circles r = a, r = b and θ1 ≤ θ ≤ θ2. (Fig. 14.34) Let

T (r, θ) = (r cos θ, r sin θ)

be the polar coordinate map. Find a region D∗ in (r, θ) coordinate plane such

that D = T (D∗).

sol. In D, we see

a ≤ r ≤ b, θ1 ≤ θ ≤ θ2.

Hence

D∗ = [a, b]× [θ1, θ2].
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Coordinate transformations

Let D∗ be a region in R
2. Suppose T is C1-map D∗ → R

2. We denote the

image by D = T (D∗). (Fig 14.35)

T (D∗) = {(x, y) | (x, y) = T (u, v), (u, v) ∈ D∗}.

D∗

u

v

D

x

y

T

Figure 14.35: The transformation T maps D∗ to D

Example 14.8.6. Let D∗ be the rectangle D∗ = [0, 1]× [0, 1] in (u, v) plane.

Find the image of D∗ under T = T (u, v) = (u+ v
2 ,

u
3 + v) and the area.

sol. The image is a parallelogram (Figure 14.40) formed by two vectors

(1, 12), (
1
3 , 1) and the area is

∣

∣

∣

∣

∂(x, y)

∂(u, v)

∣

∣

∣

∣

≡
∣

∣

∣

∣

∣

1 1
2

1
3 1

∣

∣

∣

∣

∣

=
5

6
.

We remark that these vectors are two columns of the derivative DT .

From this example it is not difficult to guess the following change of variable

form:

∫∫

D
f(x, y)dxdy =

∫∫

D∗

f(x(u, v), y(u, v))

∣

∣

∣

∣

∂(x, y)

∂(u, v)

∣

∣

∣

∣

dudv (14.19)

which is correct when f = constant and T is a linear map. Indeed, this is true

in general, we will see it soon.

Jacobian Determinant-measures change of area

We first see how the area of a region changes under a linear map. Let D∗ =
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u

v

1

1

D∗

x

y

(1, 1)
(3, 1)

2

D

T (u, v)

Figure 14.36: The image of a rectangle under a linear transform T

[0, 1]× [0, 1], and construct a linear map T that maps D∗ onto a parallelogram

D (See Figure 14.40). Consider the vector c1 := a2 − a1, c2 := a4 − a1, and

set (one may assume a1 = 0)

T (u, v) = c1u+ c2v + a1 = c1u+ c2v.

Then we can check T (u, 0) maps the line segment {0 ≤ u ≤ 1, v = 0} to the

side a1a2. Similarly, T (0, v) maps the line segment {0 ≤ v ≤ 1, u = 0} to the

side a1a4. Hence we conclude T is the desired map. The two tangent vectors

to D at the origin are

Tu = a2 − a1

Tv = a4 − a1.

The area of the parallelogram D is ‖(a2 − a1) × (a4 − a1)‖ (viewed as three

dimensional vectors) But this is nothing but the absolute value of the deter-

minant of the derivative of T . Thus

Area(D) = |J |,

where

J =
∂(x, y)

∂(u, v)
:= det

(

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)

= |DT |.

J is called the Jacobian of T . Hence we see the rectangle of dimensions ∆u,

∆v along u, v direction is mapped to a parallelogram with area |J |∆u∆v.
Thus for the area change, we have

Theorem 14.8.7. Let A be a 2× 2 matrix with non zero determinant. Let T

be a linear transformation given by T (x) = Ax. Then T maps a parallelogram

D∗ onto the parallelogram D = T (D∗) and
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Area of D = |detA| · (Area of D∗).

Remark 14.8.8. (1) A similar statement holds for a linear map with nonzero

determinant from R
3 to R

3.

Example 14.8.9. Let T be ((x+y)/2, (x−y)/2) and letD be the square whose

vertices are (1, 0), (0, 1), (−1, 0), (0,−1). Find a D∗ such that D = T (D∗).

sol. Since T is linear T (x) = Ax where A is 2×2 matrix whose determinant

is nonzero. T−1 is also a linear transform. Hence by Theorem 14.8.7, D∗ must

be a parallelogram. To find D∗, it suffices to find the inverse image of vertices.

It turns out that

D∗ = [−1, 1] × [−1, 1].

Now

A(D) = (
√
2)2 = 2, |detA| = 1

2
, A(D∗) = 4, .

This idea can be generalized to non-linear mappings.

Change of variable in the definite integrals

Given two regionsD andD∗, a differentiable mapping T onD∗ with imageD =

T (D∗), we would like to express the integral
∫∫

D f(x, y)dxdy as an integral

over D∗ of the composite function f ◦ T . We write T as

T (u, v) = (x(u, v), y(u, v)) for (u, v) ∈ D∗.

Then we have

∫∫

D
f(x, y) dxdy =

∫∫

D∗

f(T (u, v))

∣

∣

∣

∣

∂(x, y)

∂(u, v)

∣

∣

∣

∣

dudv. (14.20)

As a special case, when f = 1, we obtain the area

∫∫

D
dxdy =

∫∫

D∗

|J | dudv =

∫∫

D∗

∣

∣

∣

∣

∂(x, y)

∂(u, v)

∣

∣

∣

∣

dudv. (14.21)

Example 14.8.10. Let D∗ be the rectangle D∗ = [0, 1] × [0, π/3] in (r, θ)

plane. Find the image of D∗ under T = T (r, θ) = (r cos θ, r sin θ).
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r

θ

1

π/3

x

y

π/3

T (r, θ)

Figure 14.37: Map by polar coordinate

sol. Let T (r, θ) = (x, y). Then x2 + y2 = r2, 0 ≤ r ≤ 1. Thus D is the

circular sector 0 ≤ r ≤ 1, 0 ≤ θ ≤ π/3. (Figure 14.37)

Example 14.8.11. Evaluate

∫ 1

0

∫ 1−x

0

√
x+ y(y − 2x)2dydx.

sol. Let us use the substitution u = x+ y, v = y − 2x, so that

x =
u

3
− v

3
, y =

2u

3
+
v

3
. (14.22)

One can find the limits of integration and find J(u, v) = 1
3 . To find the limit

of integration, we see Figure 14.38. and Table 14.1.

Table 14.1: Limit of integration for Example 14.8.11
xy eq. for boundary uv eq. for boundary Simplified

x+ y = 1 u−v
3 + 2u+v

3 = 0 u = 1

x = 0 u
3 − v

3 = 0 v = u

y = 0 2u+v
3 = 0 v = −2u
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D∗

v = −2u

u = 1

v = u

u

v

D
x

y

Figure 14.38: Change of variables for Example 14.8.11

Hence we obtain

∫ 1

0

∫ 1−x

0

√
x+ y(y − 2x)2dydx =

∫ 1

0

∫ v=u

v=−2u

√
uv2|J(u, v)|dvdu

=
1

3

∫ 1

0

√
u

[

v3

3

]u

−2u

du

=
1

9

∫ 1

0

√
u(u3 + 8u3)du

=

∫ 1

0
u7/2du =

2

9
.

Example 14.8.12. Evaluate

∫ 2

1

∫ y

1/y

√

y

x
e
√
xydxdy.

sol. We use the substitution u =
√
xy, v =

√

y
x , so that

x =
u

v
, y = uv, u, v > 0. (14.23)

We see

J(u, v) =

∣

∣

∣

∣

∣

1
v − u

v2

v u

∣

∣

∣

∣

∣

=
2u

v
.

(Note that if we integrate w.r.t u first, we run into trouble!) Once we find
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1

2

1 2

v = 1

uv = 2

u = 1
u

v

1

2

1 2

y = 2

y = x

xy = 1

x

y

Figure 14.39: Change of variables for Example 14.8.12

Table 14.2: Limit of integration for Example 14.8.12
xy eq. for boundary uv eq. for boundary Simplified

y = x uv = u
v v = 1(v > 0)

xy = 1 u = 1 u = 1

y = 2 u =
√
2x, v =

√

2
x uv = 2

the limits of integration(need the region D and D∗) from Table 14.2, we obtain

∫∫

R

√

y

x
e
√
xydxdy =

∫∫

R
veu

2u

v
dudv

=

∫ 2

1

∫ 2/u

1
2ueudvdu

= 2

∫ 2

1
[vueu]

v=2/u
v=1 du

= 2

∫ 1

0
(2eu − ueu)du

= 2 [(2eu − ueu) + eu]u=2
u=1 = 2e(e − 2).

Change of variable formula - general case

Above idea of computing area ofD = T (D∗) can used when T is a differentiable

(nonlinear) mapping from a subset of R2 to R
2 by using the linear(tangent

plane) approximation of T . Let D∗ = [u0, u0 +∆u]× [v0, v0 +∆v] and D be
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the image of D∗ under T . Consider

T (u, v) =

[

x

y

]

=

[

x(u0, v0) +
∂x
∂u(u0, v0)∆u+ ∂x

∂v (u0, v0)∆v + h.o.t

y(u0, v0) +
∂y
∂u(u0, v0)∆u+ ∂y

∂v (u0, v0)∆v + h.o.t

]

(14.24)

In vector form, we have

T

[

u

v

]

= X = X0 +DT

[

∆u

∆v

]

+ h.o.t

and replace the map T by its linear part DT .

Geometric meaning of DT

Let

Tu := DT (u, v)

[

1

0

]

=

[

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

][

1

0

]

=

[

∂x
∂u
∂y
∂u

]

and

Tv := DT (u, v)

[

0

1

]

=

[

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

][

0

1

]

=

[

∂x
∂v
∂y
∂v

]

.

First we note that the two curves T (·, v) and T (u, ·) describes the boundary
of D = T (D∗) at T (u, v). First fix the v variable. Then Tu is a tangent vector

to the curve T (u, v)(as a function of u). Similarly, for each fixed u, T (u, v)

represents a curve with v as a parameter. Hence Tv is a tangent vector to the

curve T (u, v).

Now the two tangent vectors

Tu∆u, Tv∆v

form a parallelogram approximating the region D(Figure 14.40). Hence the

area of the parallelogram is (the absolute value of)

∣

∣

∣

∣

∣

∂x
∂u∆u

∂x
∂v∆v

∂y
∂u∆u

∂y
∂v∆v

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣

∣

∣

∣

∣

∆u∆v =
∂(x, y)

∂(u, v)
∆u∆v=̇J ·A(D∗).

In other words ‖Tu × Tv‖∆u∆v = |J |∆u∆v.

Summing over all subregions and taking the limit as ∆u,∆v → 0 we obtain

the formula (14.21), (14.20).
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u

v

1

1

x

y

Tv

Tu

T (u, v)

Figure 14.40: approximate T (D∗)

Change of Variables in Triple Integrals

Definition 14.8.13. Let T : R3 → R
3 be given by

T (u, v, w) = (x(u, v, w), y(u, v, w), z(u, v, w)).

The the Jacobian J is again, as 2D case, the determinant of the derivative

DT

J =
∂(x, y, z)

∂(u, v, w)
= det







∂x
∂u ,

∂x
∂v ,

∂x
∂w

∂y
∂u ,

∂y
∂v ,

∂y
∂w

∂z
∂u ,

∂z
∂v ,

∂z
∂w






.

The absolute value of this determinant is equal to the volume of paral-

lelepiped determ’d by the following vectors

Tu =
∂x

∂u
i+

∂y

∂u
j+

∂z

∂u
k

Tv =
∂x

∂v
i+

∂y

∂v
j+

∂z

∂v
k

Tw =
∂x

∂w
i+

∂y

∂w
j+

∂z

∂w
k,

which is the absolute value of the triple product (recall Chap. 12.4)

|(Tu ×Tv) ·Tw| = |J |.

Caution: Three vectors Tu,Tv ,Tw are column vectors of DT , but since

det(A) = det(AT ) for any square matrix, we have

J =
∂(x, y, z)

∂(u, v, w)
= det

[

Tu, Tv, Tw

]

.
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(u, v, w)

D∗

T

T =





−1.5u− 0.2v − 0.1uv + 0.2w2

−0.1u+ 0.7v + 0.1w
w + 0.1uv − 0.1u2 − 0.2v2





(x, y, z)

D

Figure 14.41: Deformed box and parallelepiped generated by tangent vectors.

Theorem 14.8.14. If T is a C1- map from D∗ onto D in R
3 and f : D ⊂

R
3 → R is continuous, then

∫∫∫

D
dxdydz =

∫∫∫

D∗

|J | dudvdw, (14.25)

∫∫∫

D
f(x, y, z) dxdydz =

∫∫∫

D∗

f(T (u, v, w))|J | dudvdw. (14.26)

Example 14.8.15. Evaluate

∫ 3

0

∫ 4

0

∫ y/2+1

y/2

(

2x− y

2
+
z

3

)

dxdydz

using the transformation

u = (2x− y)/2, v = y/2, w = z/3. (14.27)

sol. We see

x = u+ v, y = 2v, z = 3w. (14.28)

We see

J(u, v) =

∣

∣

∣

∣

∣

∣

∣

∂x
∂u ,

∂x
∂v ,

∂x
∂w

∂y
∂u ,

∂y
∂v ,

∂y
∂w

∂z
∂u ,

∂z
∂v ,

∂z
∂w

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

1 1 0

0 2 0

0 0 3

∣

∣

∣

∣

∣

∣

∣

= 6.

One can find the limits of integration we obtain
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x
y

z

u
v

w

x
y

z

Figure 14.42: Transformation in Example 14.8.15

Table 14.3: Limit of integration for Example 14.8.15
xyz eq. for boundary uvw eq. for boundary Simplified eq.

x = y/2 u+ v = 2v/2 u = 0

x = y/2 + 1 u+ v = 2v/2 + 1 u = 1

y = 0 2v = 0 v = 0

y = 4 2v = 4 v = 2

z = 0 3w = 0 w = 0

z = 3 3w = 3 w = 1

∫∫∫

D
fdxdydz =

∫ 1

0

∫ 2

0

∫ 1

0
(u+ w) |J |dudvdw

= 6

∫ 1

0

∫ 2

0

[

u2

2
+ uw

]1

0

dvdw

= 6

∫ 1

0

∫ 2

0

(

1

2
+ w

)

dvdw

= 6

∫ 1

0
(1 + 2w) dw = 12.

Cyindrical Coordinate - revisited

Consider the cylindrical coordinate

(x(r, θ, z), y(r, θ, z), z(r, θ, z)).
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The Jacobian of the mapping (r, θ, z) → (x, y, z) is

∂(x, y, z)

∂(r, θ, z)
=

∣

∣

∣

∣

∣

∣

∣

∂x
∂r

∂x
∂θ

∂x
∂z

∂y
∂r

∂y
∂θ

∂y
∂z

∂z
∂r

∂z
∂θ

∂z
∂z

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

cos θ −r sin θ 0

sin θ r cos θ 0

0 0 1

∣

∣

∣

∣

∣

∣

∣

= r.

∫∫∫

D
f(x, y, z) dxdydz =

∫∫∫

D∗

F (r, θ, z)dz rdr dθ.

Spherical Coordinate - revisited

Example 14.8.16. Derive the integration formula in spherical coordinate

using Theorem 14.8.14.

sol. Spherical coordinate is given by

x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cosφ.

The Jacobian of the mapping (ρ, φ, θ) → (x, y, z) is

∂(x, y, z)

∂(ρ, φ, θ)
=

∣

∣

∣

∣

∣

∣

∣

∂x
∂ρ

∂x
∂φ

∂x
∂θ

∂y
∂ρ

∂y
∂φ

∂y
∂θ

∂z
∂ρ

∂z
∂φ

∂z
∂θ

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

sinφ cos θ ρ cosφ cos θ −ρ sinφ sin θ
sinφ sin θ ρ cosφ sin θ ρ sinφ cos θ

cosφ −ρ sinφ 0

∣

∣

∣

∣

∣

∣

∣

= cosφ

∣

∣

∣

∣

∣

ρ cosφ cos θ −ρ sinφ sin θ
ρ cosφ sin θ ρ sinφ cos θ

∣

∣

∣

∣

∣

+ ρ sinφ

∣

∣

∣

∣

∣

sinφ cos θ −ρ sinφ sin θ
sinφ sin θ ρ sinφ cos θ

∣

∣

∣

∣

∣

= ρ2 sinφ(cos2 φ+ sin2 φ) = ρ2 sinφ.

Hence

∫∫∫

D
f(x, y, z) dxdydz =

∫∫∫

D∗

F (ρ, φ, θ)ρ2 sinφdρ dφ dθ.

Here F (ρ, φ, θ) means f(x(ρ, φ, θ), y(ρ, φ, θ), z(ρ, φ, θ)). This agrees with ear-

lier formula (14.14), (14.15) derived by geometric intuition.
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Example 14.8.17. The region D is given by

x2

a2
+
y2

b2
+
z2

c2
≤ 1.

Find
∫∫∫

D
|xyz|dxdydz.

sol. Let T (u, v, w) = (au, bv, cw). Then T maps the unit ball D∗ =

{(u, v, w) | u2+ v2+w2 ≤ 1} to D one-to-one, onto fashion. Since J(T ) = abc

we have

∫∫∫

D
|xyz|dxdydz =

∫∫∫

D∗

(abc)2|uvw| du dv dw

= 8

∫∫∫

D∗

+

(abc)2uvw du dv dw.

Here D∗
+ denotes the region u ≥ 0, v ≥ 0, w ≥ 0 among D∗. Now use spherical

coordinate,

8

∫∫∫

D∗

+

(abc)2uvw du dv dw

= 8(abc)2
∫ π/2

0

∫ π/2

0

∫ 1

0
ρ5 sin3 φ cos φ sin θ cos θ dρ dφ dθ

= 8(abc)2
∫ π/2

0

∫ π/2

0

[

ρ6

6

]1

0

sin3 φ cosφ sin θ cos θ dφ dθ

=
4

3
(abc)2

∫ π/2

0

[

sin4 φ

4

]π/2

0

sin θ cos θ dθ

=
1

3
(abc)2

∫ π/2

0
sin θ cos θdθ

=
1

3
(abc)2

[

sin2 θ

2

]π/2

0

=
1

6
(abc)2.


